|
@@ -0,0 +1,233 @@
|
|
|
|
|
+import argparse
|
|
|
|
|
+import datetime
|
|
|
|
|
+import os
|
|
|
|
|
+import pandas as pd
|
|
|
|
|
+from data_loader import mongo_con_parse, validate_one_line, fill_hourly_crawl_date
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _validate_predict_df(df_predict):
|
|
|
|
|
+ client, db = mongo_con_parse()
|
|
|
|
|
+
|
|
|
|
|
+ count = 0
|
|
|
|
|
+
|
|
|
|
|
+ for idx, row in df_predict.iterrows():
|
|
|
|
|
+ city_pair = row['city_pair']
|
|
|
|
|
+ flight_day = row['flight_day']
|
|
|
|
|
+ flight_number_1 = row['flight_number_1']
|
|
|
|
|
+ flight_number_2 = row['flight_number_2']
|
|
|
|
|
+ baggage = row['baggage']
|
|
|
|
|
+ valid_begin_hour = row['valid_begin_hour']
|
|
|
|
|
+ valid_begin_dt = pd.to_datetime(valid_begin_hour, format='%Y-%m-%d %H:%M:%S')
|
|
|
|
|
+ # valid_end_hour = row['valid_end_hour']
|
|
|
|
|
+ # valid_end_dt = pd.to_datetime(valid_end_hour, format='%Y-%m-%d %H:%M:%S')
|
|
|
|
|
+ update_hour = row['update_hour']
|
|
|
|
|
+ update_dt = pd.to_datetime(update_hour, format='%Y-%m-%d %H:%M:%S')
|
|
|
|
|
+ valid_begin_hour_modify = max(
|
|
|
|
|
+ valid_begin_dt,
|
|
|
|
|
+ update_dt
|
|
|
|
|
+ ).strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
|
+ df_val= validate_one_line(db, city_pair, flight_day, flight_number_1, flight_number_2, baggage, valid_begin_hour_modify)
|
|
|
|
|
+ # 有可能在当前验证时刻,数据库里没有在valid_begin_hour之后的数据
|
|
|
|
|
+ if not df_val.empty:
|
|
|
|
|
+ df_val_f = fill_hourly_crawl_date(df_val, rear_fill=2)
|
|
|
|
|
+ df_val_f = df_val_f[df_val_f['is_filled']==0] # 只要原始数据,不要补齐的
|
|
|
|
|
+ # df_val_f = df_val_f[df_val_f['update_hour'] <= valid_end_dt]
|
|
|
|
|
+ if df_val_f.empty:
|
|
|
|
|
+ drop_flag = 0
|
|
|
|
|
+ first_drop_amount = pd.NA
|
|
|
|
|
+ first_drop_hours = pd.NA
|
|
|
|
|
+ last_hours_util = pd.NA
|
|
|
|
|
+ last_update_hour = pd.NA
|
|
|
|
|
+ list_change_price = []
|
|
|
|
|
+ list_change_hours = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ # 有效数据的最后一行
|
|
|
|
|
+ last_row = df_val_f.iloc[-1]
|
|
|
|
|
+ last_hours_util = last_row['hours_until_departure']
|
|
|
|
|
+ last_update_hour = last_row['update_hour']
|
|
|
|
|
+
|
|
|
|
|
+ # 价格变化过滤
|
|
|
|
|
+ df_price_changes = df_val_f.loc[
|
|
|
|
|
+ df_val_f["adult_total_price"].shift() != df_val_f["adult_total_price"]
|
|
|
|
|
+ ].copy()
|
|
|
|
|
+
|
|
|
|
|
+ # 价格变化幅度
|
|
|
|
|
+ df_price_changes['change_amount'] = df_price_changes['adult_total_price'].diff().fillna(0)
|
|
|
|
|
+
|
|
|
|
|
+ # 找到第一个 change_amount 小于 -5 的行
|
|
|
|
|
+ first_negative_change = df_price_changes[df_price_changes['change_amount'] < -5].head(1)
|
|
|
|
|
+
|
|
|
|
|
+ # 提取所需的值
|
|
|
|
|
+ if not first_negative_change.empty:
|
|
|
|
|
+ drop_flag = 1
|
|
|
|
|
+ first_drop_amount = first_negative_change['change_amount'].iloc[0].round(2)
|
|
|
|
|
+ first_drop_hours = first_negative_change['hours_until_departure'].iloc[0]
|
|
|
|
|
+ else:
|
|
|
|
|
+ drop_flag = 0
|
|
|
|
|
+ first_drop_amount = pd.NA
|
|
|
|
|
+ first_drop_hours = pd.NA
|
|
|
|
|
+
|
|
|
|
|
+ list_change_price = df_price_changes['adult_total_price'].tolist()
|
|
|
|
|
+ list_change_hours = df_price_changes['hours_until_departure'].tolist()
|
|
|
|
|
+
|
|
|
|
|
+ else:
|
|
|
|
|
+ drop_flag = 0
|
|
|
|
|
+ first_drop_amount = pd.NA
|
|
|
|
|
+ first_drop_hours = pd.NA
|
|
|
|
|
+ last_hours_util = pd.NA
|
|
|
|
|
+ last_update_hour = pd.NA
|
|
|
|
|
+ list_change_price = []
|
|
|
|
|
+ list_change_hours = []
|
|
|
|
|
+
|
|
|
|
|
+ safe_sep = "; "
|
|
|
|
|
+
|
|
|
|
|
+ df_predict.at[idx, 'change_prices'] = safe_sep.join(map(str, list_change_price))
|
|
|
|
|
+ df_predict.at[idx, 'change_hours'] = safe_sep.join(map(str, list_change_hours))
|
|
|
|
|
+ df_predict.at[idx, 'last_hours_util'] = last_hours_util
|
|
|
|
|
+ df_predict.at[idx, 'last_update_hour'] = last_update_hour
|
|
|
|
|
+ df_predict.at[idx, 'first_drop_amount'] = first_drop_amount * -1 # 负数转正数
|
|
|
|
|
+ df_predict.at[idx, 'first_drop_hours'] = first_drop_hours
|
|
|
|
|
+ df_predict.at[idx, 'drop_flag'] = drop_flag
|
|
|
|
|
+
|
|
|
|
|
+ count += 1
|
|
|
|
|
+ if count % 5 == 0:
|
|
|
|
|
+ print(f"cal count: {count}")
|
|
|
|
|
+
|
|
|
|
|
+ print(f"计算结束")
|
|
|
|
|
+ client.close()
|
|
|
|
|
+
|
|
|
|
|
+ return df_predict
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def validate_process(node, interval_hours, pred_time_str):
|
|
|
|
|
+ '''手动验证脚本'''
|
|
|
|
|
+ date = pred_time_str[4:8]
|
|
|
|
|
+ output_dir = f"./validate/{node}_{date}"
|
|
|
|
|
+ os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
+
|
|
|
|
|
+ object_dir = "./predictions_0"
|
|
|
|
|
+
|
|
|
|
|
+ csv_file = f'future_predictions_{pred_time_str}.csv'
|
|
|
|
|
+ csv_path = os.path.join(object_dir, csv_file)
|
|
|
|
|
+
|
|
|
|
|
+ try:
|
|
|
|
|
+ df_predict = pd.read_csv(csv_path)
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ print(f"read {csv_path} error: {str(e)}")
|
|
|
|
|
+ df_predict = pd.DataFrame()
|
|
|
|
|
+
|
|
|
|
|
+ if df_predict.empty:
|
|
|
|
|
+ print(f"预测数据为空")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ df_predict = _validate_predict_df(df_predict)
|
|
|
|
|
+
|
|
|
|
|
+ timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
|
|
|
+ save_scv = f"result_validate_{node}_{pred_time_str}_{timestamp_str}.csv"
|
|
|
|
|
+
|
|
|
|
|
+ output_path = os.path.join(output_dir, save_scv)
|
|
|
|
|
+ df_predict.to_csv(output_path, index=False, encoding="utf-8-sig")
|
|
|
|
|
+ print(f"保存完成: {output_path}")
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def validate_process_auto(node, interval_hours):
|
|
|
|
|
+ '''自动验证脚本'''
|
|
|
|
|
+ # 当前时间,取整时
|
|
|
|
|
+ current_time = datetime.datetime.now()
|
|
|
|
|
+ current_time_str = current_time.strftime("%Y%m%d%H%M")
|
|
|
|
|
+ hourly_time = current_time.replace(minute=0, second=0, microsecond=0)
|
|
|
|
|
+ hourly_time_str = hourly_time.strftime("%Y%m%d%H%M")
|
|
|
|
|
+ print(f"验证时间:{current_time_str}, (取整): {hourly_time_str}")
|
|
|
|
|
+
|
|
|
|
|
+ output_dir = f"./validate/{node}"
|
|
|
|
|
+ os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
+
|
|
|
|
|
+ object_dir = "./predictions_0"
|
|
|
|
|
+
|
|
|
|
|
+ # 检查目录是否存在
|
|
|
|
|
+ if not os.path.exists(object_dir):
|
|
|
|
|
+ print(f"目录不存在: {object_dir}")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ # 获取所有以 future_predictions_ 开头的 CSV 文件
|
|
|
|
|
+ csv_files = []
|
|
|
|
|
+ for file in os.listdir(object_dir):
|
|
|
|
|
+ if file.startswith("future_predictions_") and file.endswith(".csv"):
|
|
|
|
|
+ csv_files.append(file)
|
|
|
|
|
+
|
|
|
|
|
+ if not csv_files:
|
|
|
|
|
+ print(f"在 {object_dir} 中没有找到 future_predictions_ 开头的 CSV 文件")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ # 提取时间戳并转换为 datetime 对象
|
|
|
|
|
+ file_times = []
|
|
|
|
|
+ for file in csv_files:
|
|
|
|
|
+ # 提取时间戳部分:future_predictions_202601151600.csv -> 202601151600
|
|
|
|
|
+ timestamp_str = file.replace("future_predictions_", "").replace(".csv", "")
|
|
|
|
|
+ try:
|
|
|
|
|
+ # 将时间戳转换为 datetime 对象
|
|
|
|
|
+ file_time = datetime.datetime.strptime(timestamp_str, "%Y%m%d%H%M")
|
|
|
|
|
+ file_times.append((file, file_time))
|
|
|
|
|
+ except ValueError as e:
|
|
|
|
|
+ print(f"文件 {file} 的时间戳格式错误: {e}")
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ if not file_times:
|
|
|
|
|
+ print("没有找到有效的时间戳文件")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ # 目标验证文件(当前整点减50小时)
|
|
|
|
|
+ target_time = hourly_time - datetime.timedelta(hours=50)
|
|
|
|
|
+ target_time_str = target_time.strftime("%Y%m%d%H%M")
|
|
|
|
|
+ print(f"目标验证时间: {target_time_str}")
|
|
|
|
|
+
|
|
|
|
|
+ valid_files = [(f, t) for f, t in file_times if t == target_time]
|
|
|
|
|
+
|
|
|
|
|
+ if not valid_files:
|
|
|
|
|
+ print(f"没有找到目标对应时间 {target_time.strftime('%Y%m%d%H%M')} 的文件")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ valid_file, valid_time = valid_files[0]
|
|
|
|
|
+ valid_time_str = valid_time.strftime("%Y%m%d%H%M")
|
|
|
|
|
+ print(f"找到符合条件的文件: {valid_file} (时间: {valid_time_str})")
|
|
|
|
|
+
|
|
|
|
|
+ csv_path = os.path.join(object_dir, valid_file)
|
|
|
|
|
+
|
|
|
|
|
+ # 开始验证
|
|
|
|
|
+ try:
|
|
|
|
|
+ df_predict = pd.read_csv(csv_path)
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ print(f"read {csv_path} error: {str(e)}")
|
|
|
|
|
+ df_predict = pd.DataFrame()
|
|
|
|
|
+
|
|
|
|
|
+ if df_predict.empty:
|
|
|
|
|
+ print(f"预测数据为空")
|
|
|
|
|
+ return
|
|
|
|
|
+
|
|
|
|
|
+ df_predict = _validate_predict_df(df_predict)
|
|
|
|
|
+
|
|
|
|
|
+ timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
|
|
|
+ save_scv = f"result_validate_{node}_{valid_time_str}_{timestamp_str}.csv"
|
|
|
|
|
+
|
|
|
|
|
+ output_path = os.path.join(output_dir, save_scv)
|
|
|
|
|
+ df_predict.to_csv(output_path, index=False, encoding="utf-8-sig")
|
|
|
|
|
+ print(f"保存完成: {output_path}")
|
|
|
|
|
+ print(f"验证完成: {node} {valid_time_str}")
|
|
|
|
|
+ print()
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
|
+ parser = argparse.ArgumentParser(description='验证脚本')
|
|
|
|
|
+ parser.add_argument('--interval', type=int, choices=[1],
|
|
|
|
|
+ default=0, help='间隔小时数(1,)')
|
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
|
+ interval_hours = args.interval
|
|
|
|
|
+
|
|
|
|
|
+ # 0 手动验证
|
|
|
|
|
+ if interval_hours == 0:
|
|
|
|
|
+ node, pred_time_str = "node0127", "202601281700"
|
|
|
|
|
+ validate_process(node, interval_hours, pred_time_str)
|
|
|
|
|
+ # 1 自动验证
|
|
|
|
|
+ else:
|
|
|
|
|
+ node = "node0122"
|
|
|
|
|
+ validate_process_auto(node, interval_hours)
|