| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import os
- import time
- from datetime import datetime, timedelta
- from config import mongodb_config, vj_flight_route_list_hot, vj_flight_route_list_nothot, CLEAN_VJ_HOT_NEAR_INFO_TAB, CLEAN_VJ_NOTHOT_NEAR_INFO_TAB
- from data_loader import load_train_data
- from data_preprocess import preprocess_data_simple, predict_data_simple
- from utils import chunk_list_with_index
- def start_predict():
- print(f"开始预测")
- output_dir = "./data_shards_0"
- # photo_dir = "./photo_0"
- predict_dir = "./predictions_0"
- # 确保目录存在
- os.makedirs(output_dir, exist_ok=True)
- # os.makedirs(photo_dir, exist_ok=True)
- os.makedirs(predict_dir, exist_ok=True)
- cpu_cores = os.cpu_count() # 你的系统是72
- max_workers = min(4, cpu_cores) # 最大不超过4个进程
- # 当前时间,取整时
- current_time = datetime.now()
- current_time_str = current_time.strftime("%Y%m%d%H%M")
- hourly_time = current_time.replace(minute=0, second=0, microsecond=0)
- hourly_time_str = hourly_time.strftime("%Y%m%d%H%M")
- print(f"预测时间:{current_time_str}, (取整): {hourly_time_str}")
- # 清空上一次(同小时内)预测结果
- csv_file_list = [f'future_predictions_{hourly_time_str}.csv']
- for csv_file in csv_file_list:
- try:
- csv_path = os.path.join(predict_dir, csv_file)
- os.remove(csv_path)
- except Exception as e:
- print(f"remove {csv_path} info: {str(e)}")
- # 预测时间范围,满足起飞时间 在4小时后到60小时后
- pred_hour_begin = hourly_time + timedelta(hours=4)
- pred_hour_end = hourly_time + timedelta(hours=60)
- pred_date_end = pred_hour_end.strftime("%Y-%m-%d")
- pred_date_begin = pred_hour_begin.strftime("%Y-%m-%d")
- print(f"预测起飞时间范围: {pred_date_begin} 到 {pred_date_end}")
- # 主干代码 (排除冷门航线)
- flight_route_list = vj_flight_route_list_hot + vj_flight_route_list_nothot[:0]
- flight_route_list_len = len(flight_route_list)
- route_len_hot = len(vj_flight_route_list_hot)
- route_len_nothot = len(vj_flight_route_list_nothot[:0])
- group_size = 1 # 每几组作为一个批次
- chunks = chunk_list_with_index(flight_route_list, group_size)
-
- # 如果从中途某个批次预测, 修改起始索引
- resume_chunk_idx = 0
- chunks = chunks[resume_chunk_idx:]
- batch_starts = [start_idx for start_idx, _ in chunks]
- print(f"预测阶段起始索引顺序:{batch_starts}")
- # 预测阶段
- for i, (_, group_route_list) in enumerate(chunks, start=resume_chunk_idx):
- # 特殊处理,跳过不好的批次
- # client, db = mongo_con_parse()
- print(f"第 {i} 组 :", group_route_list)
- # batch_flight_routes = group_route_list
- group_route_str = ','.join(group_route_list)
- # 根据索引位置决定是 热门 还是 冷门
- if 0 <= i < route_len_hot:
- is_hot = 1
- table_name = CLEAN_VJ_HOT_NEAR_INFO_TAB
- elif route_len_hot <= i < route_len_hot + route_len_nothot:
- is_hot = 0
- table_name = CLEAN_VJ_NOTHOT_NEAR_INFO_TAB
- else:
- print(f"无法确定热门还是冷门, 跳过此批次。")
- continue
- # 加载测试数据 (仅仅是时间段取到后天)
- start_time = time.time()
- df_test = load_train_data(mongodb_config, group_route_list, table_name, pred_date_begin, pred_date_end, output_dir, is_hot,
- use_multiprocess=True, max_workers=max_workers)
- end_time = time.time()
- run_time = round(end_time - start_time, 3)
- print(f"用时: {run_time} 秒")
- if df_test.empty:
- print(f"测试数据为空,跳过此批次。")
- continue
- # 按起飞时间过滤
- # 创建临时字段:seg1_dep_time 的整点时间
- df_test['seg1_dep_hour'] = df_test['seg1_dep_time'].dt.floor('h')
- # 使用整点时间进行比较过滤
- mask = (df_test['seg1_dep_hour'] >= pred_hour_begin) & (df_test['seg1_dep_hour'] < pred_hour_end)
- original_count = len(df_test)
- df_test = df_test[mask].reset_index(drop=True)
- filtered_count = len(df_test)
- # 删除临时字段
- df_test = df_test.drop(columns=['seg1_dep_hour'])
- print(f"按起飞时间过滤:过滤前 {original_count} 条,过滤后 {filtered_count} 条")
-
- if filtered_count == 0:
- print(f"起飞时间在 {pred_hour_begin} 到 {pred_hour_end} 之间没有航班,跳过此批次。")
- continue
-
- df_test_inputs, _, _, = preprocess_data_simple(df_test)
- df_predict = predict_data_simple(df_test_inputs, group_route_str, output_dir, predict_dir, hourly_time_str)
-
- del df_test_inputs
- del df_predict
- print(f"第 {i} 组 预测完成")
- print()
- time.sleep(1)
- print("所有批次的预测结束")
- print()
- if __name__ == "__main__":
- start_predict()
|