| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- import pandas as pd
- import numpy as np
- import bisect
- from datetime import datetime, timedelta
- from sklearn.preprocessing import StandardScaler
- from config import city_to_country, build_country_holidays
- COUNTRY_HOLIDAYS = build_country_holidays(city_to_country)
- def preprocess_data(df_train, features, categorical_features, is_training=True):
- print(">>> 开始数据预处理")
- # 生成 城市对
- df_train['city_pair'] = (
- df_train['from_city_code'].astype(str) + "-" + df_train['to_city_code'].astype(str)
- )
- # 把 city_pair、from_city_code、to_city_code 放到前三列
- cols = df_train.columns.tolist()
- # 删除已存在的三列(保证顺序正确)
- for c in ['city_pair', 'from_city_code', 'to_city_code']:
- cols.remove(c)
- # 这三列插入到最前面
- df_train = df_train[['city_pair', 'from_city_code', 'to_city_code'] + cols]
- # 转格式
- df_train['search_dep_time'] = pd.to_datetime(
- df_train['search_dep_time'],
- format='%Y%m%d',
- errors='coerce'
- ).dt.strftime('%Y-%m-%d')
- # 重命名起飞日期
- df_train.rename(columns={'search_dep_time': 'flight_day'}, inplace=True)
-
- # 重命名航班号
- df_train.rename(
- columns={
- 'seg1_flight_number': 'flight_number_1',
- 'seg2_flight_number': 'flight_number_2'
- },
- inplace=True
- )
- # 分开填充
- df_train['flight_number_1'] = df_train['flight_number_1'].fillna('VJ')
- df_train['flight_number_2'] = df_train['flight_number_2'].fillna('VJ')
- # 生成第一机场对
- df_train['airport_pair_1'] = (
- df_train['seg1_dep_air_port'].astype(str) + "-" + df_train['seg1_arr_air_port'].astype(str)
- )
- # 删除原始第一机场码
- df_train.drop(columns=['seg1_dep_air_port', 'seg1_arr_air_port'], inplace=True)
- # 第一机场对 放到 seg1_dep_time 列的前面
- insert_idx = df_train.columns.get_loc('seg1_dep_time')
- airport_pair_1 = df_train.pop('airport_pair_1')
- df_train.insert(insert_idx, 'airport_pair_1', airport_pair_1)
- # 生成第二机场对(带缺失兜底)
- df_train['airport_pair_2'] = np.where(
- df_train['seg2_dep_air_port'].isna() | df_train['seg2_arr_air_port'].isna(),
- 'NA',
- df_train['seg2_dep_air_port'].astype(str) + "-" +
- df_train['seg2_arr_air_port'].astype(str)
- )
- # 删除原始第二机场码
- df_train.drop(columns=['seg2_dep_air_port', 'seg2_arr_air_port'], inplace=True)
- # 第二机场对 放到 seg2_dep_time 列的前面
- insert_idx = df_train.columns.get_loc('seg2_dep_time')
- airport_pair_2 = df_train.pop('airport_pair_2')
- df_train.insert(insert_idx, 'airport_pair_2', airport_pair_2)
-
- # 是否转乘
- df_train['is_transfer'] = np.where(df_train['flight_number_2'] == 'VJ', 0, 1)
- insert_idx = df_train.columns.get_loc('flight_number_2')
- is_transfer = df_train.pop('is_transfer')
- df_train.insert(insert_idx, 'is_transfer', is_transfer)
- # 重命名起飞时刻与到达时刻
- df_train.rename(
- columns={
- 'seg1_dep_time': 'dep_time_1',
- 'seg1_arr_time': 'arr_time_1',
- 'seg2_dep_time': 'dep_time_2',
- 'seg2_arr_time': 'arr_time_2',
- },
- inplace=True
- )
-
- # 第一段飞行时长
- df_train['fly_duration_1'] = (
- (df_train['arr_time_1'] - df_train['dep_time_1'])
- .dt.total_seconds() / 3600
- ).round(2)
- # 第二段飞行时长(无转乘为 0)
- df_train['fly_duration_2'] = (
- (df_train['arr_time_2'] - df_train['dep_time_2'])
- .dt.total_seconds() / 3600
- ).fillna(0).round(2)
- # 总飞行时长
- df_train['fly_duration'] = (
- df_train['fly_duration_1'] + df_train['fly_duration_2']
- ).round(2)
- # 中转停留时长(无转乘为 0)
- df_train['stop_duration'] = (
- (df_train['dep_time_2'] - df_train['arr_time_1'])
- .dt.total_seconds() / 3600
- ).fillna(0).round(2)
- # 裁剪,防止负数
- # for c in ['fly_duration_1', 'fly_duration_2', 'fly_duration', 'stop_duration']:
- # df_train[c] = df_train[c].clip(lower=0)
- # 和 is_transfer 逻辑保持一致
- # df_train.loc[df_train['is_transfer'] == 0, ['fly_duration_2', 'stop_duration']] = 0
-
- # 一次性插到 is_filled 前面
- insert_before = 'is_filled'
- new_cols = [
- 'fly_duration_1',
- 'fly_duration_2',
- 'fly_duration',
- 'stop_duration'
- ]
- cols = df_train.columns.tolist()
- idx = cols.index(insert_before)
- # 删除旧位置
- cols = [c for c in cols if c not in new_cols]
- # 插入新位置(顺序保持)
- cols[idx:idx] = new_cols # python独有空切片插入法
- df_train = df_train[cols]
- # 一次生成多个字段
- dep_t1 = df_train['dep_time_1']
- # 几点起飞(0–23)
- df_train['flight_by_hour'] = dep_t1.dt.hour
- # 起飞日期几号(1–31)
- df_train['flight_by_day'] = dep_t1.dt.day
- # 起飞日期几月(1–12)
- df_train['flight_day_of_month'] = dep_t1.dt.month
- # 起飞日期周几(0=周一, 6=周日)
- df_train['flight_day_of_week'] = dep_t1.dt.weekday
- # 起飞日期季度(1–4)
- df_train['flight_day_of_quarter'] = dep_t1.dt.quarter
- # 是否周末(周六 / 周日)
- df_train['flight_day_is_weekend'] = dep_t1.dt.weekday.isin([5, 6]).astype(int)
- # 找到对应的国家码
- df_train['dep_country'] = df_train['from_city_code'].map(city_to_country)
- df_train['arr_country'] = df_train['to_city_code'].map(city_to_country)
- # 整体出发时间 就是 dep_time_1
- df_train['global_dep_time'] = df_train['dep_time_1']
- # 整体到达时间:有转乘用 arr_time_2,否则用 arr_time_1
- df_train['global_arr_time'] = df_train['arr_time_2'].fillna(df_train['arr_time_1'])
- # 出发日期在出发国家是否节假日
- df_train['dep_country_is_holiday'] = df_train.apply(
- lambda r: r['global_dep_time'].date()
- in COUNTRY_HOLIDAYS.get(r['dep_country'], set()),
- axis=1
- ).astype(int)
- # 到达日期在到达国家是否节假日
- df_train['arr_country_is_holiday'] = df_train.apply(
- lambda r: r['global_arr_time'].date()
- in COUNTRY_HOLIDAYS.get(r['arr_country'], set()),
- axis=1
- ).astype(int)
- # 在任一侧是否节假日
- df_train['flight_day_is_holiday'] = (
- df_train[['dep_country_is_holiday', 'arr_country_is_holiday']]
- .max(axis=1)
- )
- # 是否跨国航线
- df_train['is_cross_country'] = (
- df_train['dep_country'] != df_train['arr_country']
- ).astype(int)
- pass
|