| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- import os
- import datetime
- import pandas as pd
- from data_loader import mongo_con_parse, validate_one_line, fill_hourly_crawl_date
- def validate_process(node, date):
- output_dir = f"./validate/{node}_{date}"
- os.makedirs(output_dir, exist_ok=True)
- object_dir = "./data_shards"
- csv_file = 'future_predictions.csv'
- csv_path = os.path.join(object_dir, csv_file)
- try:
- df_predict = pd.read_csv(csv_path)
- except Exception as e:
- print(f"read {csv_path} error: {str(e)}")
- df_predict = pd.DataFrame()
-
- if df_predict.empty:
- print(f"预测数据为空")
- return
- # fly_day = df_predict['flight_day'].unique()[0]
- client, db = mongo_con_parse()
- count = 0
- for idx, row in df_predict.iterrows():
- city_pair = row['city_pair']
- flight_day = row['flight_day']
- flight_number_1 = row['flight_number_1']
- flight_number_2 = row['flight_number_2']
- baggage = row['baggage']
- valid_begin_hour = row['valid_begin_hour']
- df_val= validate_one_line(db, city_pair, flight_day, flight_number_1, flight_number_2, baggage, valid_begin_hour)
- if not df_val.empty:
- df_val_f = fill_hourly_crawl_date(df_val, rear_fill=2)
- df_val_f = df_val_f[df_val_f['is_filled']==0] # 只要原始数据,不要补齐的
- if df_val_f.empty:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- else:
- # 有效数据的最后一行
- last_row = df_val_f.iloc[-1]
- last_hours_util = last_row['hours_until_departure']
- last_update_hour = last_row['update_hour']
-
- # 价格变化过滤
- df_price_changes = df_val_f.loc[
- df_val_f["adult_total_price"].shift() != df_val_f["adult_total_price"]
- ].copy()
-
- # 价格变化幅度
- df_price_changes['change_amount'] = df_price_changes['adult_total_price'].diff().fillna(0)
- # 找到第一个 change_amount 小于 -10 的行
- first_negative_change = df_price_changes[df_price_changes['change_amount'] < -10].head(1)
- # 提取所需的值
- if not first_negative_change.empty:
- drop_flag = 1
- first_drop_amount = first_negative_change['change_amount'].iloc[0].round(2)
- first_drop_hours = first_negative_change['hours_until_departure'].iloc[0]
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
-
- list_change_price = df_price_changes['adult_total_price'].tolist()
- list_change_hours = df_price_changes['hours_until_departure'].tolist()
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- safe_sep = "; "
-
- df_predict.at[idx, 'change_prices'] = safe_sep.join(map(str, list_change_price))
- df_predict.at[idx, 'change_hours'] = safe_sep.join(map(str, list_change_hours))
- df_predict.at[idx, 'last_hours_util'] = last_hours_util
- df_predict.at[idx, 'last_update_hour'] = last_update_hour
- df_predict.at[idx, 'first_drop_amount'] = first_drop_amount * -1 # 负数转正数
- df_predict.at[idx, 'first_drop_hours'] = first_drop_hours
- df_predict.at[idx, 'drop_flag'] = drop_flag
- count += 1
- if count % 5 == 0:
- print(f"cal count: {count}")
-
- print(f"计算结束")
- client.close()
- timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- save_scv = f"result_validate_{node}_{date}_{timestamp_str}.csv"
- output_path = os.path.join(output_dir, save_scv)
- df_predict.to_csv(output_path, index=False, encoding="utf-8-sig")
- print(f"保存完成: {output_path}")
- if __name__ == "__main__":
- node, date = "node0105", "0107"
- validate_process(node, date)
|