| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- import os
- import datetime
- import pandas as pd
- import argparse
- from data_loader import mongo_con_parse, validate_one_line, fill_hourly_crawl_date
- def validate_process(node, interval_hours, pred_time_str):
- date = pred_time_str[4:8]
- output_dir = f"./validate/{node}_{date}"
- os.makedirs(output_dir, exist_ok=True)
- object_dir = "./predictions"
- if interval_hours == 4:
- object_dir = "./predictions_4"
- elif interval_hours == 2:
- object_dir = "./predictions_2"
- csv_file = f'future_predictions_{pred_time_str}.csv'
- csv_path = os.path.join(object_dir, csv_file)
- try:
- df_predict = pd.read_csv(csv_path)
- except Exception as e:
- print(f"read {csv_path} error: {str(e)}")
- df_predict = pd.DataFrame()
-
- if df_predict.empty:
- print(f"预测数据为空")
- return
- # fly_day = df_predict['flight_day'].unique()[0]
- client, db = mongo_con_parse()
- count = 0
- for idx, row in df_predict.iterrows():
- city_pair = row['city_pair']
- flight_day = row['flight_day']
- flight_number_1 = row['flight_number_1']
- flight_number_2 = row['flight_number_2']
- baggage = row['baggage']
- valid_begin_hour = row['valid_begin_hour']
- df_val= validate_one_line(db, city_pair, flight_day, flight_number_1, flight_number_2, baggage, valid_begin_hour)
- # 有可能在当前验证时刻,数据库里没有在valid_begin_hour之后的数据
- if not df_val.empty:
- df_val_f = fill_hourly_crawl_date(df_val, rear_fill=2)
- df_val_f = df_val_f[df_val_f['is_filled']==0] # 只要原始数据,不要补齐的
- if df_val_f.empty:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- else:
- # 有效数据的最后一行
- last_row = df_val_f.iloc[-1]
- last_hours_util = last_row['hours_until_departure']
- last_update_hour = last_row['update_hour']
-
- # 价格变化过滤
- df_price_changes = df_val_f.loc[
- df_val_f["adult_total_price"].shift() != df_val_f["adult_total_price"]
- ].copy()
-
- # 价格变化幅度
- df_price_changes['change_amount'] = df_price_changes['adult_total_price'].diff().fillna(0)
- # 找到第一个 change_amount 小于 -10 的行
- first_negative_change = df_price_changes[df_price_changes['change_amount'] < -10].head(1)
- # 提取所需的值
- if not first_negative_change.empty:
- drop_flag = 1
- first_drop_amount = first_negative_change['change_amount'].iloc[0].round(2)
- first_drop_hours = first_negative_change['hours_until_departure'].iloc[0]
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
-
- list_change_price = df_price_changes['adult_total_price'].tolist()
- list_change_hours = df_price_changes['hours_until_departure'].tolist()
-
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- safe_sep = "; "
-
- df_predict.at[idx, 'change_prices'] = safe_sep.join(map(str, list_change_price))
- df_predict.at[idx, 'change_hours'] = safe_sep.join(map(str, list_change_hours))
- df_predict.at[idx, 'last_hours_util'] = last_hours_util
- df_predict.at[idx, 'last_update_hour'] = last_update_hour
- df_predict.at[idx, 'first_drop_amount'] = first_drop_amount * -1 # 负数转正数
- df_predict.at[idx, 'first_drop_hours'] = first_drop_hours
- df_predict.at[idx, 'drop_flag'] = drop_flag
- count += 1
- if count % 5 == 0:
- print(f"cal count: {count}")
-
- print(f"计算结束")
- client.close()
- timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- save_scv = f"result_validate_{node}_{pred_time_str}_{timestamp_str}.csv"
-
- output_path = os.path.join(output_dir, save_scv)
- df_predict.to_csv(output_path, index=False, encoding="utf-8-sig")
- print(f"保存完成: {output_path}")
- def validate_process_auto(node, interval_hours):
- '''自动验证脚本'''
- # 当前时间,取整时
- current_time = datetime.datetime.now()
- current_time_str = current_time.strftime("%Y%m%d%H%M")
- hourly_time = current_time.replace(minute=0, second=0, microsecond=0)
- vali_time_str = hourly_time.strftime("%Y%m%d%H%M")
- print(f"验证时间:{current_time_str}, (取整): {vali_time_str}")
- output_dir = f"./validate/{node}"
- os.makedirs(output_dir, exist_ok=True)
- object_dir = "./predictions"
- if interval_hours == 4:
- object_dir = "./predictions_4"
- elif interval_hours == 2:
- object_dir = "./predictions_2"
-
- # 检查目录是否存在
- if not os.path.exists(object_dir):
- print(f"目录不存在: {object_dir}")
- return
-
- # 获取所有以 future_predictions_ 开头的 CSV 文件
- csv_files = []
- for file in os.listdir(object_dir):
- if file.startswith("future_predictions_") and file.endswith(".csv"):
- csv_files.append(file)
-
- if not csv_files:
- print(f"在 {object_dir} 中没有找到 future_predictions_ 开头的 CSV 文件")
- return
-
- # 提取时间戳并转换为 datetime 对象
- file_times = []
- for file in csv_files:
- # 提取时间戳部分:future_predictions_202601151600.csv -> 202601151600
- timestamp_str = file.replace("future_predictions_", "").replace(".csv", "")
- try:
- # 将时间戳转换为 datetime 对象
- file_time = datetime.datetime.strptime(timestamp_str, "%Y%m%d%H%M")
- file_times.append((file, file_time))
- except ValueError as e:
- print(f"文件 {file} 的时间戳格式错误: {e}")
- continue
-
- if not file_times:
- print("没有找到有效的时间戳文件")
- return
-
- # 计算昨天的对应时间
- yesterday_time = hourly_time - datetime.timedelta(hours=24)
- print(f"昨天对应时间: {yesterday_time.strftime('%Y%m%d%H%M')}")
- # 过滤出小于昨天对应时间的文件,并按时间排序
- valid_files = [(f, t) for f, t in file_times if t < yesterday_time]
- valid_files.sort(key=lambda x: x[1]) # 按时间升序排序
- if not valid_files:
- print(f"没有找到小于昨天对应时间 {yesterday_time.strftime('%Y%m%d%H%M')} 的文件")
- return
-
- # 获取最后一个小于昨天对应时间的文件
- last_valid_file, last_valid_time = valid_files[-1]
- last_valid_time_str = last_valid_time.strftime("%Y%m%d%H%M")
- print(f"找到符合条件的文件: {last_valid_file} (时间: {last_valid_time_str})")
- csv_path = os.path.join(object_dir, last_valid_file)
- # 开始验证
- try:
- df_predict = pd.read_csv(csv_path)
- except Exception as e:
- print(f"read {csv_path} error: {str(e)}")
- df_predict = pd.DataFrame()
-
- if df_predict.empty:
- print(f"预测数据为空")
- return
-
- client, db = mongo_con_parse()
- count = 0
- for idx, row in df_predict.iterrows():
- city_pair = row['city_pair']
- flight_day = row['flight_day']
- flight_number_1 = row['flight_number_1']
- flight_number_2 = row['flight_number_2']
- baggage = row['baggage']
- valid_begin_hour = row['valid_begin_hour']
- df_val= validate_one_line(db, city_pair, flight_day, flight_number_1, flight_number_2, baggage, valid_begin_hour)
- # 有可能在当前验证时刻,数据库里没有在valid_begin_hour之后的数据
- if not df_val.empty:
- df_val_f = fill_hourly_crawl_date(df_val, rear_fill=2)
- df_val_f = df_val_f[df_val_f['is_filled']==0] # 只要原始数据,不要补齐的
- if df_val_f.empty:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- else:
- # 有效数据的最后一行
- last_row = df_val_f.iloc[-1]
- last_hours_util = last_row['hours_until_departure']
- last_update_hour = last_row['update_hour']
-
- # 价格变化过滤
- df_price_changes = df_val_f.loc[
- df_val_f["adult_total_price"].shift() != df_val_f["adult_total_price"]
- ].copy()
-
- # 价格变化幅度
- df_price_changes['change_amount'] = df_price_changes['adult_total_price'].diff().fillna(0)
- # 找到第一个 change_amount 小于 -10 的行
- first_negative_change = df_price_changes[df_price_changes['change_amount'] < -10].head(1)
- # 提取所需的值
- if not first_negative_change.empty:
- drop_flag = 1
- first_drop_amount = first_negative_change['change_amount'].iloc[0].round(2)
- first_drop_hours = first_negative_change['hours_until_departure'].iloc[0]
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
-
- list_change_price = df_price_changes['adult_total_price'].tolist()
- list_change_hours = df_price_changes['hours_until_departure'].tolist()
-
- else:
- drop_flag = 0
- first_drop_amount = pd.NA
- first_drop_hours = pd.NA
- last_hours_util = pd.NA
- last_update_hour = pd.NA
- list_change_price = []
- list_change_hours = []
- safe_sep = "; "
-
- df_predict.at[idx, 'change_prices'] = safe_sep.join(map(str, list_change_price))
- df_predict.at[idx, 'change_hours'] = safe_sep.join(map(str, list_change_hours))
- df_predict.at[idx, 'last_hours_util'] = last_hours_util
- df_predict.at[idx, 'last_update_hour'] = last_update_hour
- df_predict.at[idx, 'first_drop_amount'] = first_drop_amount * -1 # 负数转正数
- df_predict.at[idx, 'first_drop_hours'] = first_drop_hours
- df_predict.at[idx, 'drop_flag'] = drop_flag
- count += 1
- if count % 5 == 0:
- print(f"cal count: {count}")
-
- print(f"计算结束")
- client.close()
- timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- save_scv = f"result_validate_{node}_{last_valid_time_str}_{timestamp_str}.csv"
-
- output_path = os.path.join(output_dir, save_scv)
- df_predict.to_csv(output_path, index=False, encoding="utf-8-sig")
- print(f"保存完成: {output_path}")
- print(f"验证完成: {node} {last_valid_time_str}")
- print()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='验证脚本')
- parser.add_argument('--interval', type=int, choices=[2, 4, 8],
- default=0, help='间隔小时数(2, 4, 8)')
- args = parser.parse_args()
- interval_hours = args.interval
- # 0 手动验证
- if interval_hours == 0:
- node, interval_hours, pred_time_str = "node0112_8", 8, "202601151600"
- validate_process(node, interval_hours, pred_time_str)
- # 自动验证
- else:
- # 这个node可以手动去改
- node = "node0117_8"
- if interval_hours == 4:
- node = "node0117_4"
- if interval_hours == 2:
- node = "node0117_2"
- validate_process_auto(node, interval_hours)
|