| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- import os
- import torch
- import joblib
- import pandas as pd
- import numpy as np
- import pickle
- import time
- from datetime import datetime, timedelta
- from config import mongodb_config, vj_flight_route_list_hot, vj_flight_route_list_nothot, CLEAN_VJ_HOT_NEAR_INFO_TAB, CLEAN_VJ_NOTHOT_NEAR_INFO_TAB
- from data_loader import mongo_con_parse, load_train_data
- from data_preprocess import preprocess_data, standardization
- from utils import chunk_list_with_index, create_fixed_length_sequences
- from model import PriceDropClassifiTransModel
- from predict import predict_future_distribute
- from main_tr import features, categorical_features, target_vars
- output_dir = "./data_shards"
- photo_dir = "./photo"
- def initialize_model():
- input_size = len(features)
- model = PriceDropClassifiTransModel(input_size, num_periods=2, hidden_size=64, num_layers=3, output_size=1, dropout=0.2)
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- model.to(device)
- print(f"模型已初始化,输入尺寸:{input_size}")
- return model, device
- def convert_date_format(date_str):
- """将 '2025-09-19 19:35:00' 转换为 '20250919193500' 格式"""
- dt = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')
- return dt
- # return dt.strftime('%Y%m%d%H%M00')
- def start_predict():
- # 确保目录存在
- os.makedirs(output_dir, exist_ok=True)
- os.makedirs(photo_dir, exist_ok=True)
- # 清空上一次预测结果
- csv_file_list = ['future_predictions.csv']
- for csv_file in csv_file_list:
- try:
- csv_path = os.path.join(output_dir, csv_file)
- os.remove(csv_path)
- except Exception as e:
- print(f"remove {csv_path} error: {str(e)}")
- model, _ = initialize_model()
- date_end = (datetime.today() + timedelta(days=2)).strftime("%Y-%m-%d")
- date_begin = (datetime.today() + timedelta(days=2)).strftime("%Y-%m-%d")
- # 加载 scaler 列表
- feature_scaler_path = os.path.join(output_dir, 'feature_scalers.joblib')
- # target_scaler_path = os.path.join(output_dir, 'target_scalers.joblib')
- feature_scaler_list = joblib.load(feature_scaler_path)
- # target_scaler_list = joblib.load(target_scaler_path)
- # 加载训练时保存的航班列表顺序
- with open(os.path.join(output_dir, f'order.pkl'), "rb") as f:
- flight_route_list = pickle.load(f)
- flight_route_list_len = len(flight_route_list)
- route_len_hot = len(vj_flight_route_list_hot)
- route_len_nothot = len(vj_flight_route_list_nothot)
-
- assemble_size = 1 # 几个batch作为一个集群assemble
- current_assembled = -1 # 当前已加载的assemble索引
- group_size = 1 # 每几组作为一个批次
- chunks = chunk_list_with_index(flight_route_list, group_size)
- # 如果从中途某个批次预测, 修改起始索引
- resume_chunk_idx = 0
- chunks = chunks[resume_chunk_idx:]
- batch_starts = [start_idx for start_idx, _ in chunks]
- print(f"预测阶段起始索引顺序:{batch_starts}")
- # 测试阶段
- for i, (_, group_route_list) in enumerate(chunks, start=resume_chunk_idx):
- # 特殊处理,跳过不好的批次
- # client, db = mongo_con_parse()
- print(f"第 {i} 组 :", group_route_list)
- # batch_flight_routes = group_route_list
- # 根据索引位置决定是 热门 还是 冷门
- if 0 <= i < route_len_hot:
- is_hot = 1
- table_name = CLEAN_VJ_HOT_NEAR_INFO_TAB
- elif route_len_hot <= i < route_len_hot + route_len_nothot:
- is_hot = 0
- table_name = CLEAN_VJ_NOTHOT_NEAR_INFO_TAB
- else:
- print(f"无法确定热门还是冷门, 跳过此批次。")
- continue
-
- # 加载测试数据 (仅仅是时间段取到后天)
- start_time = time.time()
- df_test = load_train_data(mongodb_config, group_route_list, table_name, date_begin, date_end, output_dir, is_hot)
- end_time = time.time()
- run_time = round(end_time - start_time, 3)
- print(f"用时: {run_time} 秒")
- # client.close()
- if df_test.empty:
- print(f"测试数据为空,跳过此批次。")
- continue
- # 数据预处理
- df_test_inputs = preprocess_data(df_test, features, categorical_features, is_training=False)
-
- total_rows = df_test_inputs.shape[0]
- print(f"行数: {total_rows}")
- if total_rows == 0:
- print(f"预处理后的测试数据为空,跳过此批次。")
- continue
- # 找对应的特征缩放文件
- batch_idx = i
- print("batch_idx:", batch_idx)
- feature_scaler = feature_scaler_list[batch_idx]
- if feature_scaler is None:
- print(f"批次{batch_idx}没有找到特征标准化缩放文件")
- continue
- # 标准化与归一化处理
- df_test_inputs, feature_scaler, _ = standardization(df_test_inputs, feature_scaler, is_training=False)
- print("标准化后数据样本:\n", df_test_inputs.head())
- # 生成序列
- sequences, _, group_ids = create_fixed_length_sequences(df_test_inputs, features, target_vars, is_train=False)
- print(f"序列数量:{len(sequences)}")
- #----- 新增:智能模型加载 -----#
- assemble_idx = batch_idx // assemble_size # 计算当前集群索引
- print("assemble_idx:", assemble_idx)
- if assemble_idx != current_assembled:
- # 从文件加载并缓存
- model_path = os.path.join(output_dir, f'best_model_as_{assemble_idx}.pth')
- if os.path.exists(model_path):
- state_dict = torch.load(model_path)
- model.load_state_dict(state_dict)
- current_assembled = assemble_idx
- print(f"从文件加载并缓存 assemble {assemble_idx} 的模型参数")
- else:
- print(f"未找到 assemble {assemble_idx} 的模型文件,跳过")
- continue
- else:
- # 同一assemble直接使用已加载参数
- print(f"复用 assemble {assemble_idx} 的已加载模型参数")
- target_scaler = None
- # 预测未来数据
- predict_future_distribute(model, sequences, group_ids, target_scaler=target_scaler, output_dir=output_dir)
- print("所有批次的预测结束")
- # 所有批次的预测结束后, 统一过滤处理
- # csv_file = 'future_predictions.csv'
- # csv_path = os.path.join(output_dir, csv_file)
- # # 汇总预测结果
- # try:
- # df_predict = pd.read_csv(csv_path)
- # except Exception as e:
- # print(f"read {csv_path} error: {str(e)}")
- # df_predict = None
- # 后续的处理
- pass
- if __name__ == "__main__":
- start_predict()
|